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ABSTRACT  

In this article we present an overview of four studies investigating Greek secondary students’ 

conceptual and procedural knowledge of fractions. We discuss the problem of defining 

conceptual and procedural knowledge, and the implications of adopting one particular definition 

over others. We draw on the studies and their results to discuss the problem of measuring 

conceptual and procedural knowledge; the issue of inter-individual differences in conceptual and 

procedural fraction knowledge; and related educational implications.  
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RÉSUMÉ  

Dans cet article, nous présentons un aperçu de quatre études examinant la connaissance 

conceptuelle ainsi que la connaissance procédurale des élèves du collège grec sur les fractions. 

Nous nous référons au problème lié à la définition de la connaissance conceptuelle et de la 

connaissance procédurale ainsi qu’aux conséquences de l’adoption d’une définition particulière 

parmi d’autres. Nous nous fondons sur les études et leurs résultats pour soulever le problème 

portant sur la mesure de la connaissance conceptuelle et de la connaissance procédurale, la 

question des différences interindividuelles entre la connaissance conceptuelle et la connaissance 

procédurale sur les fractions et les implications pour l’éducation.  
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THEORETICAL FRAMEWORK1  

 

Mathematics education researchers generally agree that mathematical competence critically 

depends on conceptual understanding as well as on procedural skill (De Corte, 2004; Kilpatrick, 

Swafford & Findell, 2001). Notwithstanding this widespread agreement, theorizing about 

“conceptual understanding” and “procedural skill” as well as about their relations has given rise 

to a still ongoing debate that touches on issues relevant to education as well as to cognition.  

The distinction between conceptual and procedural knowledge has been instrumental in 

framing this problem (Rittle-Johnson, Siegler & Alibali, 2001; Star & Stylianides, 2013). In this 

article we present an overview of four studies investigating Greek secondary students’ conceptual 

and procedural knowledge of fractions. We draw on these studies to discuss theoretical and 

methodological issues in this research area, and to highlight relevant educational implications. 

 

Conceptual and procedural knowledge: Definitional issues 

The use of the terms “conceptual knowledge” and “procedural knowledge” gained prominence in 

the field of mathematics education following a seminal publication by Hiebert (1996). Looking at 

how these terms were used over the years, Rittle-Johnson and Schneider (2015) suggested that 

there is general consensus that conceptual knowledge should be defined as knowledge of 

concepts pertaining to a domain. In this definition we interpret “concepts” as “categories” (e.g., 

entities, processes, relations) (Crooks & Alibali, 2014). This is compatible with perspectives on 

understanding that are prominent in the field of mathematics education. For example, Kilpatrick, 

and colleagues (2001) refer to conceptual understanding in mathematics as “comprehension of 

mathematical concepts, operations, and relations” (p. 5). Taking fractions as a paradigmatic case, 

we suggest that conceptual knowledge about fractions necessarily involves knowledge about how 

these mathematical entities are represented (symbolically or otherwise) and encompasses 

knowledge of their features and properties (e.g., fractions have magnitudes, they are densely 

ordered); the mathematical relations in which fractions are involved (e.g., equivalence, order) as 

well as their relation to other mathematical entities (e.g., to natural numbers); the meaning of 

fraction operations and the principles to which they obey (e.g., the laws of arithmetic); and 

knowledge of their representational meaning (Nunes & Bryant, 2015), that is, their function as 

representations of quantities and relations between quantities. Even if not exhaustive, this list 

clearly shows that conceptual knowledge is a multi-facet construct. 

On the other hand, procedural knowledge is defined as knowledge of sequences of actions 

taken to accomplish a specific goal, namely procedures (Rittle-Johnson & Schneider, 2015). All 

school-taught algorithms regarding fraction comparison or operations, for instance, qualify as 

procedures; thus the ability to carry them out would imply procedural knowledge.  

This definition has been contested on the grounds that it depicts a very narrow picture for 

procedural knowledge as something that one either has, or does not have, ignoring its different 

qualities (Star, 2005; Star & Stylianides, 2013). Consider, for example, two students who are 

both apt to perform fraction addition, but only one of them recognizes when this operation can be 

appropriately applied. This student’s procedural knowledge is arguably qualitatively different. 

Mathematics educators have taken this point into consideration. For example, Kilpatrick and 

colleagues (2001) used the term “procedural fluency” to delineate a component of mathematical 

proficiency that is valuable from an educational perspective and goes beyond “procedural 

                                                 
1 A shorter version of this paper was presented at the Eleventh Congress of the European Society for Research in 

Mathematics Education (CERME11) and will be included in the proceedings. 
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knowledge”. They defined procedural fluency as “skill in carrying out procedures flexibly, 

accurately, efficiently, and appropriately” (p. 5). Procedural fluency encompasses procedural 

knowledge. One might argue, however, that conceptual knowledge is a prerequisite of procedural 

fluency.  

Still, the definition of procedural knowledge as knowledge of procedures is endorsed by 

numerous studies in this research area (Rittle-Johnson & Schneider, 2015) and is valuable, 

because it makes a sharper distinction between conceptual and procedural knowledge, which in 

turn makes measuring these constructs separately possible. In addition, using this definition it is 

possible to capture the phenomenon of procedural skill without understanding that has long 

tantalized mathematics education.   

 

Relations between conceptual and procedural knowledge 

The relation between conceptual and procedural knowledge is difficult to establish empirically. 

This is because the two types of knowledge are typically entangled and cannot always be 

separated (Rittle-Johnson et al., 2001). The first issue of interest in the field was the order of 

acquisition of the two types of knowledge (i.e., which type develops first). Two opposing 

theoretical perspectives emerged. According to the first, conceptual knowledge precedes 

procedural knowledge: Children first develop conceptual knowledge in a domain, and then use 

this knowledge to generate strategies and select procedures to solve problems. According to the 

second, children extract principles pertaining to a domain through repeated experiences with 

problem-solving in a domain. There was supporting evidence for both positions. For example, 

Gelman & Meck (1993) showed that 3 to 5-year-old children’s implicit knowledge of the 

counting principles preceded their ability to count accurately. On the other hand, Siegler & Stern 

(1998) showed that second graders (mean age 8.75 years) developed a shortcut strategy to 

compute sums of the type a+b-b (relying on the inversion principle) after they were exposed to 

problem solving experiences. Such contradictory evidence may be due to assumptions as to what 

counts as conceptual or procedural knowledge and also to methodological limitations of the 

studies (Rittle-Johnson et al., 2001). However, considering the two examples above, one cannot 

ignore the fact that there is a difference between the development of either type of knowledge 

that occurs spontaneously in the course of cognitive development within western sociocultural 

contexts, and the development that is instruction-induced (Inagaki & Hatano, 2008).  

The current prevailing model of the relation between conceptual and procedural 

knowledge is the iterative model proposed by Rittle-Johnson and colleagues (2001) that assumes 

a bi-directional relation between the two types of knowledge and does not commit to the 

precedence of either conceptual or procedural knowledge; it rather assumes that either type of 

knowledge can trigger the learning process, depending on the child’s prior experience with the 

domain in question. Importantly, this model predicts that increases in conceptual knowledge lead 

to increases in procedural knowledge and vice versa. In fact, supporting evidence for this model 

stems from experimental intervention studies that manipulate one type of knowledge and measure 

the effects on the other type (Rittle-Johnson et al., 2001). 

The iterative model reconciles the contradictory findings in the field and accounts for 

many empirical findings, notably the well-documented finding that the two types of knowledge 

are typically highly correlated (Rittle-Johnson & Schneider, 2015). However, such correlations 

found at group level do not accurately reflect what happens at the individual level. Indeed, 

research shows that there are inter-individual differences in the way students develop the two 

kinds of knowledge putting a challenge to the iterative model (e.g., Canobi, 2004; Hallett, Nunes 

& Bryant, 2010; Hallett, Nunes, Bryant & Thrope, 2012). In particular, Hallett and colleagues 
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(2010, 2012) were the first to systematically study such individual differences in the area of 

fraction learning. They assessed conceptual and procedural knowledge of students at Grade 4 and 

5 (2010) as well as at Grade 6 and 8 (2012) and they identified groups of students who were 

either strong or weak in both types of knowledge. However, they also consistently traced two 

substantial groups of students for whom there was discrepancy between the two types of 

knowledge (i.e., students in one group exhibited stronger procedural fraction knowledge, 

compared to their conceptual knowledge, and vice versa for students in the other group).  

Before more progress can be made in understanding the relations between conceptual and 

procedural knowledge, more attention should be paid to the validity of measures of conceptual 

and procedural knowledge (Rittle-Johnson & Schneider, 2015). 

   

Measures of conceptual and procedural knowledge 
Measuring conceptual and procedural knowledge is a challenging endeavor, particularly with 

respect to conceptual knowledge, which is considered a multi-dimensional construct. Indeed, 

procedural knowledge as knowledge of procedures is typically tested by asking students to carry 

out common school-taught algorithms. In contrast, assessing conceptual knowledge requires a 

great variety of tasks, as is evident considering, for example, the various components of 

conceptual knowledge of fractions listed above. Moreover, there is a great variety of task types 

used in this research area, even for the same mathematical idea (Crooks & Alibali, 2004). Rittle-

Johnson and Schneider (2015) outlined two broad categories of tasks taken to provide explicit 

and implicit measures of conceptual knowledge. The first category (explicit measures) comprises 

tasks that urge the participants to articulate their understandings in a domain. Such tasks require, 

for example, explaining one’s of answers in mathematical tasks, or explaining how procedures 

work, invoking the underlying principles. The second category (implicit measures) includes tasks 

requiring students to deal with mathematical tasks assumed to target conceptual knowledge such 

as representing or comparing fractions.  

Using any of these types of tasks is challenging. For example, tasks assessing conceptual 

knowledge implicitly should not be familiar to the participants; else they might use a learnt 

procedure. Consider, for example, that the ability to represent fractions is deemed an indicator of 

conceptual knowledge. However, a task that requires representing a fraction using the area model 

(e.g., “shade the circle to represent 3/8”) is so over-practiced in school, that it might actually be 

procedurized: a) Look at the number below the fraction bar; b) partition the circle in 8 equal 

parts; c) look at the number above the fraction bar; d) shade 3 parts.  

Another, albeit related, problem is that tasks deemed “conceptual” may be accomplished 

by participants through procedural strategies. For example, when participants compare fractions 

mentally, it is typically assumed that they rely on their understanding of fraction magnitudes; 

restricting the use of paper and pencil, however, does not prevent participants who are familiar 

with the “cross-multiplication” strategy from accomplishing the task using a procedure 

(Faulkenberry, 2013). Such issues make interpreting results from questionnaire studies difficult.  

On the other hand, explicit measures of conceptual knowledge require more than 

conceptual knowledge; they also require the ability to express effectively one’s ideas. Such tasks 

in written questionnaires, in particular, may not be responded by the participants, more so if there 

are many of them.   

As is evident from this discussion, measuring conceptual knowledge is a challenging 

endeavor. It should also be noted that measuring procedural knowledge as knowledge of 

procedures appears simpler only because it is delimited by the specific definition. 
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Tapping on Greek secondary students’ conceptual and procedural knowledge of fractions 
As expected based on the discussion above, the development of research tasks to measure 

conceptual and procedural knowledge has been an important part of the fours studies outlined in 

this article. To develop the tasks we were guided by the analysis of the components of conceptual 

knowledge presented above as knowledge of fraction representations; fraction features and 

properties; mathematical relations (equivalence, order); relations of fractions to other 

mathematical entities, in particular to natural numbers; the meaning of fraction operations and the 

principles to which they obey; and knowledge of the representational meaning of fractions. This 

does not mean that each assumed component corresponded to one or more tasks; rather, more 

than one of the components could be embedded in a task.  

We were informed by prior studies on conceptual and procedural knowledge of fractions 

(e.g., Baroody & Hume, 1991; Hallett et al., 2010; 2012); on the development of instruments 

regarding rational number understanding (e.g., Van Hoof, Verschaffel & Van Dooren, 2015), on 

students’ conceptual difficulties with fractions (e.g., Moss, 2005), in particular the inappropriate 

transfer of natural number knowledge to natural number tasks (e.g., Vamvakoussi & Vosniadou, 

2010). We also considered literature on number sense (e.g., Reys & Yang, 1998).  

Table 1 presents 9 main task categories that we used in all four studies, describing the 

corresponding tasks and referring to the assumed components of conceptual knowledge. 

Examples of items for each task categories are presented in Appendix A. One will notice that 

some items are presented in open-ended format, while others in multiple-choice format. We note 

that in Study 1 and 2 we used open-ended items. In Studies 3 and 4 similar items were used, 

albeit in multiple-choice format. The alternatives were informed by students’ responses in 

Studies 1 and 2. Figure 1 presents an item (the “pie problem”) in open-ended and multiple-choice 

format. 

 

TABLE 1 

Examples of task types   
 

Task 

Category 
Task Description 

Conceptual knowledge 

component(s) 

A 
Represent/evaluate a representation of a 

fraction using the area model  

Representation 

B 
Represent/evaluate a representation of a 

fraction on the number line 

Representation 

C 
Represent the result of a fraction 

operation (e.g., a product of fractions) 

Representation, meaning of 

operations 

D Estimate the result of a fraction operation 
Meaning of operations, fraction 

magnitude 

E 
Choose the appropriate operation to 

satisfy a constraint. 

Meaning of operations, relation 

to natural numbers 

F Compare fractions mentally Relations, fraction magnitudes 

G 
Mind a difference between fractions and 

natural numbers 

Properties, relations to natural 

numbers 

H 
Consider the unit of reference in 

contextualized problem 

Representational meaning 

J 
Use an appropriate operation to model a 

situation 

Representational meaning, 

meaning of operations 
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FIGURE 1 

 

Example of a research item in open-ended and multiple-choice format 

 

 

OVERVIEW OF THE STUDIES 

 

Study 1: General trends in Greek secondary students’ conceptual and procedural fraction 

knowledge 

Study 1 (Bempeni & Vamvakoussi, 2014) was a cross-sectional study that investigated the 

development of conceptual knowledge of fractions from grade 7 to grade 9. We designed a 

questionnaire consisting of 24 open-ended items targeting conceptual knowledge of fractions 

along the lines described above. The difficulty of items varied, from very simple ones (e.g., 

representing a proper fraction using the area model) to quite challenging ones (i.e., items 

targeting the dense ordering of fractions). In addition, the questionnaire included 4 procedural 

items on standard school-taught procedures, namely on fraction operations (e.g., “compute the 

sum 10/63+8/9”). We administered this questionnaire to 80 7th and 9th graders. The students were 

asked to solve the conceptual tasks and explain their solutions; and to carry out the fraction 

operations.  

The results showed no significant difference between the two age groups’ overall 

performance, and no significant difference in the overall performance for conceptual tasks, nor 

for procedural tasks. However, we found that older students relied significantly more on 

procedural strategies (i.e., school-taught procedures). Looking at each task separately, we found 

that 9th graders performed significantly better in 3 conceptual tasks, albeit relying on school-

taught transformation strategies. For example, they converted fractions into decimals in order to 

place them on the number line; and they converted 3/2 and 13/27 into similar fractions in order to 

compare them.  

Performance in procedural tasks was fairly good (at least 70% succeeded in each task), 

whereas performance in conceptual tasks varied widely (as expected). An interesting pattern 

emerged: Although the great majority of students were apt to carry out the four fraction 

operations, about 60% failed in tasks targeting conceptual understanding of the operations (e.g., 

in estimating the sum 12/13+7/8). In addition, although practically all students were able to 

construct an area model for a proper fraction, about 25% asserted that the shaded part of the 

triangle in item A1 (Appendix A) was “one-third”; and more than half of the students failed to 

represent an improper fraction (5/3), or explicitly stated that “it is not possible to choose five 

parts out of three”. Further, about half asserted that “eating 3/5 of a pie” necessarily means 

“eating 3 pieces of a pie” (see Figure 1). Finally, we also traced some students who were flawless 

in the procedural tasks, but failed in even the simplest conceptual tasks (e.g., item A1 in 



  Educational Journal of the University of Patras UNESCO Chair                                        2019, 6(2), p. 82-96, ISSN: 2241-9152   

 

88 

 

Appendix A), indicating an asymmetry between the two types of knowledge. We focused on this 

issue in Study 2. 

 

Study 2: Inter-individual differences in conceptual and procedural knowledge of fractions 

In Study 2 (Bempeni & Vamvakoussi, 2015) we recruited 7 9th graders to participate in in-depth 

task-based interviews. The selection of the participants was not random. First, based on their 

school grades, all participants could be characterized as medium to high level students in 

mathematics. Second, they shared the same mathematics tutor who provided information on their 

mathematical competence. Based on this information, we had reasons to expect some variation in 

their conceptual and procedural knowledge of fractions.  

We used an instrument with 30 fraction open-ended tasks, adjusting and extending the 

collection of conceptual tasks used in Study 1, and adding few procedural tasks (e.g., operations 

with mixed numbers). We also explicitly asked students not to apply school-taught procedures in 

certain fraction comparison tasks that could be tackled with conceptual strategies (e.g., one 

proper and one improper fraction; similar to item F in Appendix A, albeit in open-ended format). 

The participants were asked to solve the tasks thinking aloud and explaining their answers.   

Based on the analysis of their responses in terms of accuracy and strategy used 

(procedural/conceptual), the participants were distributed in three profiles. The Conceptual-

Procedural profile consisted of three students who showed robust conceptual knowledge of 

fractions, combined with procedural knowledge.   

The Procedural profile consisted of three students who succeeded in practically all 

procedural tasks, but failed systematically in conceptual tasks. When restricted from using 

school-taught procedures, they exhibited severe lack of fraction understanding. For example, they 

asserted that a fraction is bigger, when it has larger terms; that multiplication always results in 

larger results; and, similarly to several students in Study 1, they claimed that eating 3/5 of a pie 

necessarily means eating 3 pieces out of 5 pieces of pie, because “the denominator shows how 

many pieces there are, and the nominator shows how many pieces you take”.  

Finally, the Conceptual profile was represented by one student that failed in all tasks 

requiring procedural knowledge, but managed to deal successfully with most of the conceptual 

tasks. This student excelled in tasks targeting fraction representations; exhibited a variety of 

conceptual strategies; and provided sophisticated explanations in many conceptual tasks. 

The findings of Study 2 were consistent with the findings of Hallett and colleagues (2010, 

2012), indicating that that there are individual differences in the way students develop the two 

types of knowledge. Moreover, they illustrated the possibility that these differences can be 

extreme, even at grade 9, that is, for older students that the participants in the studies of Hallett 

and colleagues. In following studies, we attempted to further investigate this issue, shifting from 

qualitative to quantitative methods.  

 

Study 3: Developing a valid and reliable instrument  
In Study 3, we developed and evaluated a new instrument measuring conceptual and procedural 

knowledge of fractions (Bempeni, Poulopoulou, Tsiplaki & Vamvakoussi, 2018). In its initial 

form, the instrument consisted of 39 items, 12 procedural items and 27 conceptual items. The 

procedural items were typical school tasks testing for knowledge of taught procedures. For 

example, students were asked to carry out fraction operations and operations with mixed 

numbers; to find an equivalent fraction; to simplify complex fractions; and to compare dissimilar 

fractions using the standard procedure.  
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The conceptual tasks were based on our materials from Study 1 and Study 2 which were 

adjusted and enriched when necessary, based on our experience with testing these tasks with 

students. In this study we opted for multiple-choice items, instead of open ones (see also Van 

Hoof et al., 2015), with a view to discourage the use of procedural strategies in conceptual tasks 

(e.g., in comparison tasks), an issue that, as discussed, is highlighted in the literature (e.g., 

Faulkenberry, 2013) and was noticeable in Study 1.  

We conducted a clinical pilot study with 61 students and asked 6 mathematics education 

experts to assist in the evaluation of the instrument. The instrument was assessed with respect to 

a) face validity and content validity, through the experts’ feedback on clarity, accuracy, and 

relevance of the instrument; b) convergent and divergent validity, via multitrait analysis; c) 

internal consistency, calculating Cronbach’s alpha; and d) external consistency with the test-

retest method, calculating the intra-class correlation coefficient.  

The instrument showed strong face validity given that all items were assessed as clear and 

accurate by the experts, who were also highly consistent with each other in rating the relevance of 

each item to the aim of the instrument (Content Validity Index =1>.83). All items of the 

procedural scale showed convergent validity and divergent validity by demonstrating high 

correlation with the procedural scale and low correlation with the conceptual scale, respectively. 

However, eight items of the conceptual scale showed low correlation with the conceptual scale or 

higher than expected correlation with the procedural scale. Further, the value of intra-class 

correlation coefficient was high (above 0.8) for all procedural items, but below 0.5 for five 

conceptual items.  

The problematic items were removed, resulting in an instrument consisting of 14 

conceptual and 12 procedural tasks, with good indicators of validity, reliability, and objectivity, 

which we used in Study 4. However, removing conceptual items from the questionnaire is not an 

insignificant matter, and we will come back to this issue in the discussion. 

 

Study 4: Testing for inter-individual differences in a quantitative study 

In Study 4 (Bempeni et al., 2018) we administered the aforementioned instrument to 126 ninth 

graders and we analyzed the data using cluster analysis, testing for individual differences. 

Following Hallett and colleagues (2010, 2012), we used in the analysis the residualized scores of 

the procedural and the conceptual scales, the raw scores being the percentages of correct answers 

out of the total of answered questions. This is because the two scales are expected to be 

correlated (Rittle-Johnson & Schneider, 2015), and this method provides a way to exclude the 

common part of variation from both scales. It should be noted that these scores do not represent 

absolute magnitudes of each type of knowledge; rather, they indicate discrepancies between the 

two types of knowledge. For example, a positive residual with respect to procedural knowledge 

means that a person’s procedural knowledge is stronger than expected given their conceptual 

knowledge, and vice versa for negative residuals.  

The cluster analysis used the k-means method and Euclidean distance as a distance 

measure and the optimal number of clusters was determined via statistical methods to be four. 

Two of these clusters comprised students who did not show great discrepancies between the two 

types of knowledge and their performance was either equally high in both type of tasks (N=22, 

17.5%) or equally low in both types of tasks (N=31, 24.6%). On the contrary, the two remaining 

clusters comprised students who either performed better than expected in conceptual tasks given 

their performance in procedural tasks (Conceptual Profile, N=21, 16.7%); or performed better in 

procedural tasks given their performance in conceptual tasks (Procedural Profile, N=52, 41.3%).  
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These results supported the hypothesis that there are individual differences in the way that 

students develop the two type of knowledge and were consistent with the findings of our previous 

studies, and also with the results of Hallett et al. (2010, 2012). Moreover, our findings provided 

evidence that these differences may persist and remain salient for older students.  

We note that within the Procedural Profile, we traced few extreme cases of students who 

excelled in the procedural items, but showed a severe lack of conceptual understanding, similar to 

students in Study 2. For example, one student achieved 100% score in the procedural tasks but 

only 14.29% in conceptual tasks, failing even in some of the simplest ones. We did not trace such 

extreme cases within the Conceptual Profile. Nevertheless, there were students with extremely 

low performance in procedural tasks, who still managed to deal with several of the conceptual 

tasks. For example, a student in the Conceptual Profile failed in all procedural tasks and 

responded correctly to 50% of the conceptual tasks. Interestingly, this particular student was able 

to estimate a sum of fractions (i.e., item G in Appendix A) despite the fact that she had failed to 

perform fraction addition. 

 

 

CONCLUSIONS-DISCUSSION  
 

In this article we presented an overview of four studies investigating secondary students’ 

conceptual and procedural knowledge of fractions, qualitatively as well as quantitatively. The 

findings of these studies converge on the conclusion that there are inter-individual differences in 

the development of these types of knowledge (see also Hallett et al., 2010, 2012). In addition, 

they indicate that such differences may remain salient up to ninth grade; and that they may be 

even extreme, in the sense that one type of knowledge may be far more developed than the other 

(Study 2, Study 4). Our findings are strengthened by the fact that we measured conceptual and 

procedural fraction knowledge reliably and validly via a new instrument (Study 4).  

 

Theoretical issues  

Given the empirical evidence regarding inter-individual differences in the relative strength of 

conceptual and procedural knowledge, the question arises: Do such findings put a challenge to 

the iterative model proposed by Rittle-Johnson and colleagues (2001)? Rittle-Johnson and 

Schneider (2015; see also Rittle-Johnson, Schneider & Star, 2015) acknowledge the presence of 

inter-individual differences. They argue that taking an iterative view on the development of 

conceptual and procedural knowledge does not imply the assumption that “the two types of 

knowledge are equally developed at any given time” (Rittle-Johnson et al., 2015, p.590). 

However, considering the age and education level of our participants together with the fact that 

they have been exposed to fraction instruction since Grade 3, one would have expected a more 

symmetrical relation between the two types of knowledge. In particular, it can be questioned 

whether extreme asymmetries such as the ones exhibited, for example, by students of Study 2, 

can be explained by the iterative model.  

We believe that these findings highlight the fact that increases in one type of knowledge 

do not necessarily lead to substantial increases in the other type of knowledge. Rather, there are 

(at least) two factors than need to be taken into consideration. First, given that this is case of 

instruction-induced knowledge development, the quality of instruction matters, particularly with 

respect to procedural knowledge. Rittle-Johnson and colleagues (2015) touched on this point, 

when they reviewed studies showing that improvements in procedural knowledge can lead to 

improvement in conceptual knowledge. The practice problems used in such studies were 
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carefully constructed and sequenced based on conceptual principles. Thus, it is not the case that 

any type of teaching for procedural knowledge triggers the development of conceptual 

knowledge.  

Second, the intention of the learner must also be taken into consideration. Indeed, it 

arguably takes engagement, effort, and reflection to extract abstract principles from repeated 

experiences with practice problems, even if these are carefully chosen. Similarly, conceptual 

knowledge manifested, for example, as the ability to estimate fraction magnitudes does not 

necessarily lead to procedural skill; rather it takes some extra effort to learn and become able to 

carry out the standard procedure for fraction comparison accurately. Whether this effort is 

invested or not depends on the learner’s intention.   

 

Methodological issues  

Developing a valid and reliable instrument to measure conceptual and procedural fraction 

knowledge (Study 3) has been a challenging endeavor. In fact, there were several theoretical and 

methodological issues that we had to tackle in the process, and some difficult decisions to make. 

First, measures of procedural knowledge were easy to construct and validate. However, this is 

due to the fact that we adopted a simple, perhaps over-simplified, definition of procedural 

knowledge (Star, 2005), as discussed in the introduction.  

Second, measures of conceptual knowledge were particularly challenging. On the one 

hand, it is important to address various aspects of conceptual knowledge (Rittle-Johnson & 

Schneider, 2015), which requires the use of a great variety of tasks. On the other hand, this 

variety makes it difficult to construct a measure with good indicators of convergent validity, 

resulting to the exclusion of tasks (Study 3). Further, the use of multiple-choice items does not 

exclude the possibility that students in fact use procedural strategies when dealing with 

conceptual tasks, which was observable in Studies 1 and 2, but not in Studies 3 and 4. This might 

be an explanation for the fact that some conceptual tasks showed higher correlation with the 

procedural scale than expected (Study 3), and they also needed to be excluded. For example, 

locating fractions on the number line were among the problematic conceptual tasks in Study 4, 

presumably because the students, similarly to the students in Study 1, used transformation 

strategies to deal with the task. Excluding items may result in a more robust instrument; however 

a lot of useful insights in students’ understandings are lost. Consider, for example, the “pie 

problem” (Figure 1). This task targets a fundamental, aspect of fraction understanding, but we 

had to remove it from the instrument (Study 3), because the great majority of students, even some 

of the ones with overall good performance, failed. Thus, this task was not useful in discriminating 

between “conceptual” and “procedural” students, but removing it meant ignoring an important 

aspect of conceptual knowledge about fractions that students appeared to lack.  

 

Few remarks on instruction 

The latter remark brings us to a consistent finding across all four studies: Students failed in 

elementary, yet fundamental conceptual tasks. Consider again the “pie problem” (Figure 1) which 

was used in all studies. This task was challenging for half the students in Study 1; for three out of 

seven middle-to-high level students (based on their school grades) in Study 2; and for the great 

majority of students who participated in Study 3.  

This raises certain issues for instruction. First, Study 1 indicates that conceptual 

knowledge does not improve from 7th to 9th grade, despite the fact that during these years Greek 

students recapitulate content regarding fractions and are introduced to rational numbers. 

However, what seems to change is that students tend to rely more on procedural strategies. This 
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may conceal their lack of conceptual fraction understanding is some cases (e.g., when placing 

fractions of the number line), but not in tasks that cannot be tackled with school-taught 

procedures (e.g., the pie problem). Second, it appears that students with very poor understanding 

of fractions still manage to get good grades at school (Study 2). Third, the majority of the 

students in Study 4 were placed in the Procedural profile (i.e., they did better in the procedural 

tasks, than one would expect based on their performance in the conceptual tasks). These are quite 

strong indications that students’ school experiences are more favorable to the development of 

procedural knowledge. In other words, instruction appears to still over-emphasize procedural 

knowledge, neglecting students’ conceptual difficulties with fractions (Moss & Case, 1999). This 

assumption cannot, however, explain the existence of (fewer) students who have stronger 

conceptual, than procedural knowledge.  

 

Further research  

The source of individual differences in conceptual and procedural knowledge is still an open 

question, despite the fact that several hypotheses have been formulated and tested. Factors such 

as prior knowledge in the domain (Schneider, Rittle-Johnson & Star, 2011); cognitive profile 

(Gilmore & Bryant, 2008; Hallett et al., 2012); general conceptual of procedural ability as well as 

school experience measured as school attendance have been tested (Hallett et al., 2012), with 

unsatisfactory results.  

We believe that the learner’s intention when engaging with mathematics is an important 

factor worth investigating in this respect. For example, investigating students’ learning 

approaches to mathematics, together with their conceptual and procedural knowledge of 

fractions, Bempeni and Vamvakoussi (2015) found that students on the conceptual side had 

different study goals compared to students on the procedural side (understanding vs. school 

achievement, respectively). Further theorizing and research is needed in this direction. 
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APPENDIX A 

Examples of research tasks 

 

A1. Is the shaded part of the triangle 
1

3
of its area?   

A2. The gray bar is
3

2
 X, where X is one of the white bars. Which one is X? 

 

 

 

 

a. The first white bar b.  The second white bar c. The third white bar 

B. Which fraction corresponds to point A on the number line? 

A

0 31 2
 

C. Which of the following represents 
1

2
 of 

1

3
? 

  
a.  b.  c. None of the previous 

D. Without computing, can you tell if the sum 
12 7

13 8
 -is  

a.
 
greater than 

1

2
 b. smaller than 

1

2
 

c. I cannot tell if I do not carry out the addition 

E. Without computing, can you choose the operation that makes this inequality true? 

121  
3

4
> 121 

a. Multiplication  b.  Division  c. I cannot choose without computing 
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F. Without computing, can you tell which of 
211

423
 and 

31

29
 is greater? 

a. 
211

423   
is greater than 

31

29
  b. 

31

29
 is greater than 

211

423
 

c. I cannot tell if I do not 

make them similar 

G. Are there any numbers between 
2

5
 and 

3

5
? If yes, how many? 

H.  Maria bought one pizza from Lucullus and ate one quarter of it. John bought one pizza from 

Vesuvius and ate half of it. Could you tell who ate more pizza? 

I. Eleni has two drawers full with socks. In the first drawer, 
1

2
   of the socks are white. In the 

second drawer, 
1

3
  of the socks are white. Could you tell how many white socks does Eleni 

have? 

 

 


